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Fig. 1: Performance comparison between the DIAMOND [1] (baseline) and our Physics-Informed BEV World Model
(PIWM), both trained on the dataset collected from HighwayEnv [2]. PIWM outperforms the baseline by generating more
physically consistent results, with better existential consistency and kinematics response.

Abstract— A major challenge in deploying world models
is the trade-off between size and performance. Large world
models can capture rich physical dynamics but require massive
computing resources, making them impractical for edge devices.
Small world models are easier to deploy but often struggle to
learn accurate physics, leading to poor predictions. We propose
the Physics-Informed BEV World Model (PIWM), a compact
model designed to efficiently capture physical interactions in
bird’s-eye-view (BEV) representations. PIWM uses Soft Mask
during training to improve dynamic object modeling and
future prediction. We also introduce a simple yet effective
techniques—Warm Start for inference to enhance prediction
quality with zero-shot model. Interactive experiments show
that at the same parameter scale (400M), PIWM surpasses
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the baseline by 60.6% in weighted overall score. Moreover,
even when compared with the largest baseline model (400M),
the smallest PIWM (130M Soft Mask) achieves a 7.4% higher
weighted overall score with a 28% faster inference speed.

I. INTRODUCTION

The Genie series of models [3]-[5] has significantly ad-
vanced research on world models. Beginning with the origi-
nal Genie and Genie 2, these systems introduced the ability to
generate interactive environments from data, enabling agents
to learn and act within diverse virtual worlds. The most
recent iteration, Genie 3, demonstrates emergent physical
reasoning capabilities: it can simulate gravity, collisions, and
object interactions without relying on an explicit physics
engine. This capability indicates that scaling large world
models can lead to a deeper, implicit understanding of
the laws of physics, a critical step towards more general
embodied intelligence. Among the world models, bird’s-eye-
view (BEV) world models [6], [7] are particularly promising
for motion prediction and future trajectory modeling. By
representing the environment in a top-down view [8], [9],
BEV models can capture spatial relationships and object
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interactions more effectively than first-person or ego-centric
views, making them suitable for navigation tasks in robotics.

Running world models online is constrained by edge hard-
ware performance. While devices such as the NVIDIA Jetson
Orin Nano Super (67 TOPS) [10], AGX Orin (200-275
TOPS) [11], or Tesla HW4 (500-720 TOPS) [12] support
moderate models, state-of-the-art video/world models like
HunyuanVideo [13] and Veo 3 [14] with hundreds of billions
of parameters remain infeasible outside GPU/TPU clusters.
More compact models, e.g., DIAMOND (0.4B) runs at 21
FPS on an RTX 4080 Laptop GPU (542 TOPS) but only 9.5
FPS on 100-TOPS edge devices. Both rates fall below the
human perceptual smoothness threshold (~24 FPS), which
challenges real-time deployment.

While further shrinking the world model to run smoothly
on edge devices is feasible, a fundamental challenge remains:
can compact models capture the richness of physical dynam-
ics without sacrificing reasoning ability? Reducing model
size alone often leads to oversimplification and loss of fi-
delity. Addressing this gap requires shifting focus from scale
to intelligent design—Ileveraging physics-informed data, in-
ductive biases, and targeted training. Such models can move
beyond pattern memorization, enabling robust generalization
and effective reasoning under resource constraints. We ad-
dress this challenge by extending the 400M-parameter world
model DIAMOND [1] to better capture physical consistency
(Fig. 1), by introducing a new Physics-Informed World
Model (PIWM) with the following contributions:

o Soft Mask. We propose a method that extracts spatial
semantic information, emphasizing the existence of dy-
namic objects while preserving action sensitivity. Our Soft
Mask improves temporal and perceptual video consistency
and achieves higher human-judged physics scores than the
baseline [1]. Experiments further show that our method
enables parameter reduction for edge deployment without
compromising physical consistency.

« Warm Starting. We introduce a zero-shot Warm Start
method, that injects contextual information at inference
time to improve generation stability at small scales. It
can be directly plugged into any pretrained diffusion-based
world model, and yields FID gains over the baseline [1].

e Open-source models and dataset. We collect 2,000
episodes in HighwayEnv [2] with an MCTS agent, yielding
2 million BEV frames with aligned states and actions.
Rewards and actions are carefully designed to evenly cover
interaction and lane distributions, thereby supporting fu-
ture exploration in physical consistency for the community.

II. RELATED WORK

World Models have demonstrated the potential to learn com-
plex world dynamics. Large-scale models such as the Genie
series [3]-[5] and Veo 3 [14] show the benefits of scale for
long-horizon prediction and richer environment simulation,
while recent works [1], [15], [16] target lightweight models
that can run with limited resources. DIAMOND [1] trains
an RL agent fully inside a 0.4B-parameter diffusion world
model. Inspired by these advances, researchers have applied

world models to autonomous driving [17]-[20]. Within this
domain, Bird’s eye view (BEV) has emerged as a promising
research direction, leading to attempts of interpreting BEV
features as a world model. BEVDiffuser [21] designs a
diffusion model to denoise the BEV feature maps, gaining
a significant performance improvement, while Li et al. [7]
introduce WoTE, a BEV world model for efficient and real-
time future prediction and trajectory evaluation.

Edge computing. Large models are often unsuitable for edge
deployment in autonomous driving due to high computa-
tional and memory demands. Although compression tech-
niques offer efficiency gains, they pose critical limitations
in safety-critical settings. Quantization [22]-[24] accelerates
inference, but amplifies numerical errors under distribution
changes. Pruning [25]-[27] risks removing weights vital
for rare scenarios, harming robustness. Knowledge distilla-
tion [28]-[30] compresses models but often fails to preserve
fine-grained spatiotemporal reasoning and precise decision
boundaries, degrading performance in tasks. Thus, achieving
compact, efficient, and reliable models for real-time edge
deployment remains a key challenge. This motivates the
design of small models yet capable of accurate and robust
dynamic reasoning under resource constraints.

Encoding Physics into World Models. Because large mod-
els are hard to deploy on edge devices, distillation [31], [32]
is widely used but often yields weaker or unstable perfor-
mance. We instead train a compact world model tailored for
edge constraints. Beyond efficiency, physics understanding
is a key criterion for world models [33], [34], indicating
whether they capture causal dynamics rather than merely
reproducing appearance. DrivePhysica [35] improves physics
awareness in driving world models by enforcing motion in
a reference system, temporal consistency, and correct spa-
tial relations. Using pretrained depth and semantic models,
World4Drive [36] can gain a deep understanding of the spa-
tial and semantic properties of the physical world. Yet main-
taining strong physics reasoning in compact models remains
open. Here, we show that PIWM effectively strengthens
physical understanding under tight resource budgets.

III. METHODOLOGY

This section presents our data collection for world models’
training and the design principles of our PIWM. The methods
are split into two categories: training stage and inference
stage. Section introduces how we integrate masking
into the training stage. In , we elaborate the PIWM’s
training process, and deals with our Warm Start strategy
for the inference stage.

A. Data Collection

As illustrated in Fig. °, we collect training data from
the HighwayEnv simulator [2], a widely used platform for
reinforcement learning with diverse highway scenarios and
a BEV representation (Fig. ). To promote diversity while
maintaining a controlled collision rate, we designed a Monte
Carlo Tree Search (MCTS) agent to autonomously control
the ego vehicle. The agent is biased toward acceleration
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Fig. 2: Illustration of soft masks and hard mask. In each 3D cubic shape in the mask figures, the color gradient indicates
the mask value according to the chosen mask weights. (a) shows the original frame, while (b) shows the hard mask. (c)-(d)
show the Gaussian distributions for global scene softening and ego-centric softening.
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Fig. 3: The general framework: (Upper Left) Data collection
using MCTS agent. (Right) Supervised World Model train-
ing. (Bottom) Online inference conditioned on human input.

maneuvers while maintaining collision avoidance, yielding a
broad spectrum of realistic maneuvers. In total, we gather
2,000 episodes comprising 2,000,000 BEV frames, each
paired with ground-truth physical states (poses and veloc-
ities) for the ego and surrounding vehicles.

B. Training with Hard & Soft Masks

We use masks to emphasize the existence of dynamic
objects and thus aim to enhance physical consistency. Here,
the mask can be interpreted as a matrix that shares the
same shape as the image and selectively represents its
characteristic regions. To design our masks, we need to first
identify the ego vehicle (colored in green in the HighwayEnv
simulator, Fig. “a) and the surrounding vehicles (colored in
blue) inside a BEV image. For this purpose, we adopt a
color-checking module which detects the pixels belonging
to the ego and the surrounding vehicles.

1) Hard Mask: Following state-of-the-art approaches
[35], [37] that directly leverage geometric information as
a condition, the hard mask employs a binary mask to

distinguish between dynamic objects and background en-
vironment. Given a BEV image I € R7XWXC where H
denotes height, W width, and C' the number of channels,
The hard mask my,q € N¥XW is constructed as:

mhard(xvy) = {

1 if (x,y) is green or blue )
0 otherwise

2) Soft Mask: Inspired by soft constraints in classical
control, Soft Mask serves as an input-space soft constraint
during both training and inference. It adds a conditioning
channel with continuous spatial semantic weights that em-
phasize interaction-prone dynamic regions while preserving
action sensitivity. Unlike the hard mask, our soft mask
myp € [0, 1]H W assigns continuous values between 0 and
1 to dynamic object regions, while maintaining zero values
for static environmental areas. We design mygf as:

Weighted Surrounding Mask
—
Myofe = (wego © Mego * -N;go + Wsurr + Mgyrr ) -/V:global 2

L |
Weighted Gaussian Ego Mask

In (7), meg, and mg,, are hard masks for the ego vehicle
(green channel) and surrounding vehicles (blue channel),
weighted by the tunable factors weg, and wgy,. In practice,
we suggest Wgyr slightly larger than weg, during both training
and inference to emphasize existential consistency while
preserving action sensitivity of the ego vehicle:

1 if (z,y) is green
m, ,Y) = 3
e () {0 otherwise S
1 if (x,y) is blue
Mgyrr ((L‘7 y) = ( y) 4)
0 otherwise

As shown in Fig. ’, we devise two softening dimensions:
ego-centric and global scene softening. Ego-centric Soften-
ing uses a two-dimensional Gaussian distribution centered
around the detected ego vehicle:
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Fig. 4: Training pipeline.
where (Zego, Yego) denote the ego vehicle’s centroid, while
o, and o, are tunable Gaussian parameters. Global Scene
Softening uses a global Gaussian distribution along the
longitudinal direction of the BEV scene, centered at the ego
vehicle’s z-coordinate:

-/\/'global = N(«T ‘ Lego, (Uglobal W)2) (6)

where gjobal 18 a tunable parameter regulating the Gaussian’s
width, and W is the BEV image width.

Downsampling process uses bicubic interpolation to down-
sample the softened mask to match the input resolution of
the denoising model: mgggn <+ bicubic(myy) -

3) World Model Training: World Models are generative
models that learn to simulate how the environment evolves
over time. Given a history of what the agent has seen (ob-
servations, actions), the model predicts future observations.
As illustrated in Fig. /, we follow a similar EDM [38]
training setup as the baseline DIAMOND model [1]. Our
soft mask is integrated into the EDM architecture as part
of the input for the diffusion model Dy, where 6 are
the trainable parameters. During training, we sample a se-
quence of length L containing past action—observation pairs,
where each pair consists of an action a and an observation
x (image). A sequence at timestamp t is represented as
(XY _pi1 Ge—L41,- .-, X),a4,%7, ), drawn from the dataset
D. The denoising process is given as:

20 0
Xtt1 *DG(XtT+1aTaXt_L+1;taat—L+1:t7mo,t) (7

where 7 is noise level, m, ; can be either myof ; Or My,
(mgof,; means Soft Mask at timestep t). The diffusion
model Dy is trained to denoise a corrupted version of xJ, ;,
conditioned on the history of observations. To guide the
model’s attention, we integrate our soft mask into the EDM
architecture by concatenating it with the observations. The
training loss is defined as:

L) =E || %, —x74q07]. (8)

Algorithm 1 Physics-Informed BEV World Model
Training

Reqllil‘e: D, Pmeanu Pstd

1: while not converged do

2: (XY_ 41> Qt—L41,- -, X7, a4, X)) ~ D > > sample
3 log(c) ~ N (Pmean, P%4) > > noise level
4 Ti=0 > > default identity schedule from EDM
5 X7 ~N(xP, ,,0%) > > add gaussian noise
6: )A(?—&-l A DG(XI+177'7 Xg—L+1:taat—L+1:tamo,t)

7 L=|%x0, —xP 4|2 > > loss
8 00—Vl > > gradient step
9: end while

Inference

Require: noise covariance: Yog and Yey.
1: if i == 0 then

2 x; ~N(0,031) > > Initialize image
3: else if ¢ > 0 then

4: x; ~ N(xi—1,0, ot + Zew) > > Warm Start
5: end if

6: 70[0] < so > > known initial state
7: fort=0to N —1 do

8: Tit+1 < Se(7i; 04, 0i+1) > > denoised prediction (2)
9: Ti+1[0] < so > > known initial state
10: end for

11: return 7y > > noise-free sample

C. Inference with Warm Starting

To improve temporal consistency in the generative process
at inference time, we design a warm-start strategy. The
method is model-agnostic (zero-shot) and can be applied to
any trained world model without retraining. The intuition
follows autoregressive generation: each frame is synthe-
sized by perturbing the previously generated clean frame,
which promotes spatial and temporal coherence across the
sequence. At generation step ¢, instead of sampling from
pure Gaussian noise, we initialize the reverse process by
perturbing the clean image from step 7 — 1, denoted z;_1 .
The perturbed sample Z; r is drawn from

A Zip | ic10) = N(Tiz1,0, Zog + Zew)

K1), ()

C' times

Yoff = O'gﬂr blkdiag( K, ...
—_———

2
Yew = Ogpy In-

Here, x;_1,0 and Z; 7 are flattened vectors in R™*1 with
n =HxWxCC; H, W, and C denote image height,
width, and channel count. The matrix K; = 117 € R!x!
with | = H x W specifies a rank-1 covariance within
each channel, inducing a channel-wise global offset (fully
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Fig. 5: Qualitative comparison of different methods on common failure cases.

The first row (“Stuck”) compares Hard

Mask and Soft Mask for the “Stuck” issue, which concerns whether the agent is insensitive to actions. The second row (“Eat
up”) and third row (“Swap”) compare the baseline [1] with Soft Mask for the “Eat up” and “Swap” problems, respectively.

correlated spatial positions). The operator blkdiag(-) places
C copies of K; along the diagonal, ensuring no cross-channel
correlation. The term o2, J,, adds element-wise independent
noise, where J,, denotes the identity matrix. In practice, Z;
serves as the terminal-time initialization for the denoiser at
step ¢, balancing coherence (via ¥g) and flexibility for local
changes (via Xey).

IV. RESULTS
A. Experimental Setup

We evaluate action-conditioned BEV highway video gen-
eration: given the last four frames and the current action,
the model predicts the next frame and then rolls out au-
toregressively. We compare four variants using the same
U-Net backbone under the EDM framework: (i) Baseline
(DIAMOND [1]), (ii) Hard Mask, (iii) Warm Start, and
(iv) Soft Mask. Method-specific mechanisms were detailed
in and . We report three parameter budgets (130M,
170M, 400M) by changing only the denoiser channel width.
Consistent with our evaluation scope, reconstruction quality
was reported for baseline/Warm Start/Soft Mask; physical
consistency was reported for all four methods; efficiency was
reported for baseline/Soft Mask.

1) Reconstruction Quality: We sample 100 initial 16-
frame segments from the test set as real observations
and generate corresponding 16-frame rollouts with identi-
cal spawn points (Starting player position) and action se-
quences. FID is computed with pytorch-fid (Inception-
V3 (pool3)) over all frames jointly. FVD is computed
with cd-£fvd (I3D backbone). LPIPS loss is computed with

lpips (AlexNet backbone) between paired real/generated
frames and averaged over spawn points.

Parameters Method Reconstruction metrics
FID | FVD | LPIPS |
Baseline 52.9 304.1 0.021
130M Warm Start 50.9 298.9 0.022
Soft Mask 74.1 269.4 0.023
Baseline 36.4 362.8 0.022
170M Warm Start 333 367.8 0.022
Soft Mask 79.7 189.3 0.026
Baseline 23.3 204.2 0.013
400M Warm Start 22.2 209.4 0.013
Soft Mask 52.1 156.8 0.014

TABLE I: Results of FID, FVD and LPIPS.

2) Physics Consistency: As noted by the creators of
Genie 3, evaluating visual world models can be subjective.
To obtain quantitative judgments, we adopt Mean Opinion
Score (MOS) as our primary evaluation method, following
ITU-R BT.500 [39], [40] on a five-point scale (10=Excellent,
8=Good, 6=Fair, 4=Poor, 2=Bad). We conduct a within-
subject, double-blind user study with 24 non-expert raters,
who evaluated all four methods under the same user interface
and task prompts. We report Interactive Existential Con-
sistency (IEC), Kinematics Response (KIR), and Temporal
Existential Consistency (TEC), averaged and mapped to a

Y"How Do You Measure the Quality of a World Model?
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percentage scale. . We also report a weighted overall score
(WO) emphasizing interactive existential stability:

WO =0.5-1EC + 0.25 - KIR + 0.25 - TEC. (10)

3) Efficiency: We benchmark on three platforms:
RTX 4090, RTX 4080 (laptop), and RTX 3060 (laptop). For
each parameter budget and configuration, we run 10 trials of
1,000 frames under identical resolution, sampling settings,
initial frames, and action sequence; the first five frames of
each run are discarded. We report p95 FPS, p95 inference-
only latency measured with CUDA events, and peak GPU
memory, averaged across trials.

B. Reconstruction Quality

At three model sizes (130M, 170M, 400M), Table ' shows
three consistent trends. (i) Soft Mask achieves the best
FVD at all scales—269.4 (130M), 189.3 (170M), 156.8
(400M)—improving over baseline by 11.4%, 47.8%, and
23.2%, respectively, indicating stronger temporal coherence.
(ii) Warm Start yields a small but consistent FID gain over
baseline. (iii) LPIPS is low for all methods (all < 0.03),
which reflecting high perceptual similarity to ground truth
and differences between methods are minor.

Visual and distributional analysis (Fig. ©) suggests the
higher FID for Soft Mask is driven by color-distribution
shifts rather than perceptible degradations in image quality:
compare to baseline, Soft Mask slightly increases green-
channel intensity on green pixels and RGB values on gray
background (Fig. ¢, o), which changes dataset-level statis-
tics that FID captures despite minimal visual differences
between Fig. ©© and Fig.

In summary, perceptual quality is comparable across meth-
ods (low LPIPS), while FVD—more sensitive to motion
quality—consistently favors Soft Mask at all parameter sizes,
indicating better temporal dynamics.

Param.  Method | IEC+ KIR{ TEC?t | WO 1
75M Baseline 2250 4500 4750 | 34.38

Warm Start’ | 2250  50.00  52.50 | 36.88

Baseline 28.12 5359 5646 | 41.57

130M  Hard Mask! | 3875 3250  17.50 | 31.88
Soft Mask 4375 6417  56.87 | 52.14

Baseline 32.09 51.04 69.38 46.15

170M  Hard Mask! | 4250 4625 2750 | 39.69
Soft Mask 6021 63.16 7583 | 64.85

Baseline 30.63  70.63 6229 | 4855

400M  Hard Mask! | 4750 3875  40.00 | 43.44
Soft Mask 82.08 6468 8290 | 77.94

TABLE II: Results of Human evaluation scores. The metrics
considered are Interactive Existential Consistency (IEC),
Kinematics Response (KIR), and Temporal Existential Con-
sistency (TEC), Weighted Overall (WO). Baseline is DIA-
MOND [1]. T indicate the experiments are evaluated by 4
humans. While the rest are evaluated by 24 humans.

C. Physical Consistency

Beyond generative quality, adherence to physical con-
straints more directly determines practical utility. We there-
fore conduct qualitative and quantitative evaluations. The
first row ("Stuck") in Fig. © shows that the binary spatial
guidance of Hard Mask can over-constrain behavior, sup-
pressing actions and even preventing lane changes. Under the
same scenario and action inputs, Soft Mask applies weighted,
continuous spatial-semantic guidance that preserves object
existence while remaining action-sensitive. The second ("Eat
up") and third ("Swap") rows illustrate that the baseline
frequently exhibits existential errors in interactive scenes,
while Soft Mask is better in object continuity.

Quantitatively, we evaluated all methods using a double-
blind, within-subject MOS protocol; results are reported
in Table 'I. Hard Mask increases IEC relative to baseline
(e.g., +37.8% @130M, +55.1% @400M) but, due to over-
constraint, degrades KIR and TEC (e.g., -39.3% / -69.2%
@130M), consistent with the "Stuck" failure mode in Fig.
Warm Start, as a training-free zero-shot approach, yields
modest gains at small model scales. At 75M with four expert
raters, it shows little change in IEC but improves kinematic
stability (KIR +11.1%) and temporal stability (TEC +10.5%),
producing a WO gain of +7.3% without retraining.

A detailed per-metric comparison between Soft Mask and
baseline is shown below.

1) Interactive Existential Consistency (IEC): TEC quanti-
fies identity/existence preservation under interactive, extreme
maneuvers (e.g., collisions, squeezes). Soft Mask signifi-
cantly outperforms baseline at all scales: +55.6% (130M),
+87.6% (170M), +168.1% (400M). Baseline’s IEC scores
average around 30 with limited gains from scaling, whereas
Soft Mask’s continuous pixel-weighted guidance stabilizes
identity and existence, achieving 82.08 at 400M.



RTX 4090 RTX 4080 Laptop RTX 3060 Laptop
Param. Method (1321 TOPS) (542 TOPS) (105 TOPS)
FPS 1 Latency | GPU | FPS 1 Latency | GPU | FPS 1 Latency | GPU |
130M Baseline 32.61 16.93 834.3 28.14 29.98 749.6 12.41 71.90 923.4
Soft Mask 32.19 17.48 834.5 27.99 30.39 749.7 12.40 72.04 923.6
170M Baseline 32.16 17.15 975.8 27.40 31.23 889.0 12.12 73.88 1064.8
Soft Mask 30.99 17.34 974.7 27.53 30.89 889.8 12.04 74.42 1063.7
400M Baseline 27.49 21.69 1795.7 21.83 40.17 1727.9 9.72 93.42 1884.8
Soft Mask 28.32 22.08 1795.9 21.37 41.82 1727.0 9.67 93.99 1885.0

TABLE III: Results of FPS, latency, and peak GPU memory usage. GPU memory in MiB. FPS indicates 95th percentile

(p95) Frames per second. Latency in ms. All measurements with compilation enabled.

2) Kinematics Response (KIR): KIR captures immediate
controllability and the amplitude response to actions. Soft
Mask maintains an advantage at small-to-medium scales:
+19.7% (130M) and +23.8% (170M); at 400M it is slightly
below baseline (-8.4%). Together with improved FVD at
each scale, the results suggest comparable or better kinematic
behavior via smoothed per-step action amplitudes.

3) Temporal Existential Consistency (TEC): TEC mea-
sures existence consistency over time. Soft Mask leads by
+9.3% and +33.1% at 170M and 400M, respectively, and
is on par with baseline at 130M, indicating that continuous
spatial modulation improves cross-timestep stability.

Across metrics, our proposed Soft Mask dominates IEC
and TEC while remaining competitive on KIR, yielding
markedly higher weighted overall (WO) than baseline:
+25.4% (130M), +40.5% (170M) , and +60.6% (400M).
Notably, even the smallest Soft Mask model (130M) achieves
higher IEC and WO than the largest baseline model (400M).
Overall, continuous spatial-semantic guidance provided by
Soft Mask mitigates the "stuck" issue of Hard Mask and
significantly improves interactive and long-term physical
consistency without sacrificing action flexibility.

D. Edge Computing Efficiency

As shown in Table '/, we compare baseline and Soft
Mask across parameter scales and hardware spanning a broad
TOPS (Tera Operations Per Second) range representative of
robotics and autonomous driving deployments. Soft Mask
matches baseline’s resource footprint across settings, adding
no measurable computational overhead. On a representative
542 TOPS device, downsizing to 170M reduces p95 latency
by ~25% and increases p95 FPS from ~21 to ~27, sur-
passing the 24 FPS perceptual smoothness threshold. Further
downsizing to 130M, and combined with Table ', the 130M
Soft Mask attains a WO of 52.14 at 27.99 FPS, whereas the
400M baseline attains 48.55 at 21.83 FPS (below 24 FPS),
supporting parameter reduction as a practical path for edge
deployment without compromising physical consistency.

V. DISCUSSION

We first establish a clear efficacy anchor at a higher
parameter budget (400M) and then verify scale-insensitive
improvements at smaller budgets (170M and 130M). Under

edge computing, when p95 FPS meets real-time display (e.g.,
24 FPS), smaller configurations still outperform the larger
baseline on physics-oriented human scores. This indicates
that the gains stem from the mechanisms themselves rather
than from parameter count, and it supports parameter reduc-
tion as a practical path to edge deployment without sacri-
ficing physics consistency. Trends on TEC further suggest
that continuous spatial modulation improves cross-timestep
stability, consistent with the intended role of Soft Mask in
stabilizing temporal dynamics.

FID results reveal that Soft Mask may exhibit channel-
level shifts during generation, likely caused by out-of-
distribution deviations in generalization. Nevertheless, this
does not compromise practical utility: considering percep-
tual similarity (LPIPS) and temporal consistency (FVD and
TEC), Soft Mask consistently achieves superior performance.

Limitations remain. First, our evaluation is conducted
solely in simulation using HighwayEnv, which may not
capture the full complexity of real-world driving scenarios
including adverse weather conditions, complex urban envi-
ronments, etc. Second, the current mask construction relies
on color-based detection and could be made more robust.
Finally, the physics consistency evaluation relies primarily
on subjective Mean Opinion Scores (MOS), which, despite
following established standards, may miss subtle physical
violations critical in safety-critical applications.

VI. CONCLUSION AND FUTURE WORK

We present a Physics-Informed BEV World Model
(PIWM) that improves physical consistency while avoiding
action suppression and additional computational overhead.
PIWM provides two mechanisms: Soft Mask, a training-
time conditioning channel with continuous spatial semantic
weights that highlight interaction-prone regions while pre-
serving action sensitivity, and Warm Start, a training-free
inference strategy that enhances generation stability. Across
parameter scales, PIWM with Soft Mask substantially im-
proves physics-oriented human scores and generative dynam-
ics metric (FVD), and under edge-computing budgets that
satisfy real-time display, even smaller models can maintain
better physical consistency than larger baseline.

Future work will adapt PIWM to real-world datasets with
richer conditions and rare events, develop a decoder that



directly predicts future states to guide generation and re-
duce drift, and explore general objective physics metrics for
comprehensive evaluation of spatiotemporal consistency and
dynamics. We also plan to evaluate our methods in closed-
loop planning and control to assess safety and robustness
under domain shifts.
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